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Analysis of Stresses and Strains Near the

End of a Crack Traversing a Plate

By G. R. IRWIN,! WASHINGTON, D. C.

A substantial fraction of the mysteries associated with
crack extension might be eliminated if the description of
fracture experiments could include some reasonable esti-
mate of the stress conditions near the leading edge of a
crack particularly at points of onset of rapid fracture and
at points of fracture arrest. It is pointed out that for
somewhat brittle tensile fractures in situations such that
a generalized plane-stress or a plane-strain analysis is
appropriate, the influence of the test configuration, loads,
and crack length upon the stresses near an end of the
crack may be expressed in terms of two parameters. One
of these is an adjustable uniform stress parallel to the
direction of a crack extension. It is shown that the other
parameter, called the stress-intensity factor, is propor-
tional to the square root of the force tending to cause
crack extension. Both factors have a clear interpretation
and field of usefulness in investigations of brittle-fracture
mechanics.

INTRODUCTION

URING and subsequent to the recent World War, investi-
gations of fracturing have shared in the general growth
of applied-mechanics research. Among the fracture fail-

ures responsible for interest in this field were those of welded
ehips, gas-transmission lines, large oil-storage tanks, and pres-
surized cabin planes. The propagation of a brittle crack across
one or more plates in which the average tensile stress was thought
to be safely below the yield strength is s prominent feature of
these examples.

As a result of these investigations there was a revival of in-
terest in the Griffith theory of fracture strength (1).2 It was
pointed out independently by Orowsan (2) and by the author (3)
that a modified Griffith theory is helpful in understanding the
development of a rapid fracture which is sustained with energy
from the surrounding stress field. Expositions of this idea have
been given (3, 4, 5) using such terms as fracture work rate and
strain-energy release rate.

The basic idea of the modified Griffith theory is that, at onset
of unstable fast fracturing, one can equate the fracture work per
unit erack extension to the rate of disappearance of strain energy
from the surrounding elastically strained materizl. The term,
disappearance of strain energy, refers to the loss of strain energy
which would oceur if the system were isolated from receiving
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energy, for example, from movement of the forees applying ten-
sion to the material. For convenience this is referred to here
as the fixed-grip strain-energy release rate. Since the strain-
energy disappearance rate st any moment depends on the load
magnitudes rather than on movement of the points of load ap-
plication, use of the fixed-grip strain-energy release-rate coneept
is not limited to fixed-grip experiments.

It is the purpose of this paper to describe the relation of these
terms to the elastic stresses and strains near the leading edge of
a somewhat brittle crack. For purposes of this paper ‘somewhat
brittle’ means that a region of large plastic deformations may
exist close to the erack but does not extend away from the crack
by more than a small fraction of the crack length.

Previous investigations (3-7) have established a viewpoint with
respeet to the mechanies of fracturing which may be summarized
in part as follows:

The fixed-grip strain-energy release rate has the same role as an
influence controlling time rate of crack extension as the longitudi-
nal lond hasin controlling time rate of plastic extension of a tensile
bar. In the latter case the force per unit area tending to cause
plastic extension is the longitudinal stress. In the former case a
motivating foree per unit thickness can be defined quite generally
in terms of the rate of conversion of strain energy to thermal
energy during crack extension. This generalized force is the rate
of decrease of the fixed-grip strain energy with erack extension on
a unit-thickness basis. Also this energy rate can be regarded as
composed of two terms: (a) The strain-energy loss rate associated
with nonrecoverable displacements of the points of load applica-
tion (assumed zero in this diseussion); and (b) the strain-energy
loss rate associated with extension of the fracture accompanied
only by plastic strains local to the crack surfaces, The second of
these two terms, herein called G, appears to be the force compo-
nent most directly related to crack extension and the one with the
most practical usefulness.

Determination of characteristic values of G for onset or arrest,
of rapid fracturing and the applications of such measurements to
““fail-safe’” design procedures have been diseussed elsewhere (4, 5,
8, 0). It will be shown here that the tensile stresses near the
crack tip and normal to the plane of the erack are determined by
the force tendency G. The discussion is arranged so as to de-
velop relationships useful in the analysis of fracture experiments
whether the purpose of the work is to determine characteristic
G-values or simply to determine the stress field near the leading
edge of the crack.

The material of this paper is, at one point, related to Sneddon’s
analysis of stresses near an embedded erack having the shape of a
flat eircular disk (10). Otherwise, for simplicity and bearing in
mind the service fracture failures referred to in the foregoing,
discussion is restricted to a straight crack in a plate. It is as-
sumed the plate thickness is small enough compared to the erack
length so that generalized plane stress constitutes a useful two-
dimensional viewpoint. In addition it is assumed the crack is
moving, as brittle cracks generally do move, along & path normal
to the direction of greatest tension, o that the component of shear
stress resolved on the line of expected extension of the crack is
zZero.
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REPRESENTATIVE STRESS FIELDS AssociATED WITH CRACKS

A paper by Westergaard (11) gave a convenient semi-inverse
method for solving a certain class of plane-strain or plane-stress
problems. Let Z, Z, and Z’ represent successive derivatives with
respect to z of a function Z(z), where z is (z + 4y). Assume that
the Airy stress function may be represented by

F=ReZ+yImZ.....ccccvvvnnn.. 98]
then

2
g, = il =ReZ —yImZ’............. [2]

oy?

oF
o, = o0 =ReZ+yImZ'........c.... [3]

oF

= ———=—=yReZ'......ioco... 4
Tay Py ¥ Re 4]

By choices of the function Z(z), Westergaard showed solutions for
stress distribution as influenced by bearing pressures or cracks in
a variety of situations. The class of problems which can be solved
in this way is limited to those such that r,,, is zero along the z-axis.

In particular, if a large plate contains a single crack on the z-
axis whose length is small compared to the plate dimensions or a
colinear series of such cracks, and if the applied loads are such
that 7, is zero along the z-axis, then the stress distribution is
readily constructed with the aid of Westergaard’s semi-inverse
procedures.

Two examples of such problems were given by Westergaard
(11) as follows:

1 A central straight crack of length 2a along the z-axis in an
infinite plate with a biaxial field of tension o at large distances
from the crack

o

2@ = T asep

2 A series of equally spaced straight cracks of length 2a, on
the z-axis in an infinite plate with biaxial stress o, as before, and
with the distance between the crack centers, [

o

[1 (Sin 11'{&/1)2]‘/2. ...... Saeaw
~ \sin wz/l

Three additional examples obtainable with the semi-inverse
procedure suggested by Westergaard are as follows:

3 Single crack along the z-axis extending from —a to a with
a wedge action applied to produce a pair of “splitting forces’’ of
magnitude P located at = b (see Fig. 1)

Pq 1 — (b/a)r]?
1,-(2 . b)z [1 p (a/z)2:| .......... [7]

Z(z) =

Z(z) =

4 The situation of example 3 with an additional pair of forces
of magnitude P atx = —b

2Pa 1 — (b/a)?])/
5 [ ] .......... 8]

(2% — 1 — (a/z)?

Z(z) =

5 Example 3 repeated along the z-axis at intervals [, and with
the wedge action centered so that b is zero

5 |=4Y
P sin ? sin ?
Z(2) = | 1 — .. 9]
. mZ . Tz
l (sm —£) sin _Z
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Fiec. 1 OpreNING OF A CrRACK BY WEDGE FORCES

In all of these problems a uniform compression, — o,,, may be
added to the value of ¢, given by Equation [2]. Since linearized
elasticity relations are assumed to apply, one may obtain the Z-
function for combined tension and wedge action by adding the
appropriate Z-function for tension to the appropriate Z-function
for a pair of wedge forces.

As an extending crack moves across a plate of finite width the
crack may attain sufficient length so that the tensile forces acting
to cause crack extension are not sufficiently accurate when ob-
tained using infinite plate relations such as those of Equations
[6] and [7]. The major adjustment required is that of the total
load across the z-axis from the end of the crack to the side of the
plate. A convenient way to make this adjustment, if the crack is
centered, is to use expressions for Z such as in examples 2 and 5.
The side boundaries of the plate would then be taken to occur at
z = —Il/2 and z = +1/2. In the stress distributions resulting
from examples 2 and 5 the shearing stress 7, is zero along the side
boundaries. However, the side boundaries are represented as
possessing a distribution of z-direction loads which should be
absent. Depending upon the objectives of the stress analysis this
defect may be outweighed in importance by the convenience of
having an approximate solution of the problem in compact form.

Suppose, next, that the situation to be studied is a crack extend-
ing across a finite-width plate from one of the plate side bound-
aries. Let the intersection of the crack with the side boundary be
the origin of co-ordinates and let the line of crack extension be the
positive portion of the z-axis, the end of the crack being at z = a.
It will be assumed that weights or blocks have been set against the
side boundaries so as to prevent or greatly reduce the tendency of
these boundaries to move in the negative z-direction as the crack
extends. In this event Z-functions similar to those of examples
2 and 5 may again be employed as a convenient means for obtain-
ing a compact approximation to the stress distribution. In this
situation the side boundaries of the plate would be assumed to be
atz = Qand atz = 1/2.

In any of the foregoing examples the only stress acting at the
edges of the crack is the optional added stress in the z-direction
—0,.. An uncertainty as to proper choice of o, exists for the
example discussed previously of & crack extending from one side
of a finite-width plate. In addition, if the crack moves rapidly,
determination of the stress distribution away from the crack will
require a dynamic-stress analysis,

STrREss ENVIRONMENT OF THE END oF THE CRACK

However, the stress distribution near the end of the crack can be
expressed (a) independently of uncertainties of both magnitude of
applied loads and of the dynamic unloading influences, and (b) in
such a way that records from several strain gages placed near the




CHANICS

ES

ozy Ay be
 linearized
ain the Z-
vdding the
Z-function

width the
rces acting
when ob-
Equations
f the total
side of the
he crack is
s2f .
ooc. b
3 resulting
1g the side
sented as
should be
alysis this
enience of
ract form.
ck extend-
de bound-
undary be
ion be the
atz = a.
gainst the
ndency of
the crack
examples
or obtain-
In this
med to be

ing at the
-direction
ts for the
1 one side
8 rapidly,
orack will

2K

ek c:

enitude of
and (b) in
| near the

A TR

Tl

SEPTEMBER, 1957

€
. | _STRAN
sgasil samnsan 7“_/_ GAUGE
I
1
i
'
i
|
|
|

y
€y and €,

8 1 stra
} ;.if/ GAUGES
|

F16. 2 RELATION OF r AND 8 TO y AND (2 — @) AND EXAMPLES OF
LoCATIONS FOR STRAIN GAGES

end of the crack serve to determine the “‘crack-tip stress distribu-
tion.”

Consider for all of the five examples the substitution of varia-
bles

2=a+ ret®

where
r?=(z —a)+ y?and tan § = y/(z — a)

as shown in Fig. 2.
If one assumes quantities such as r/a and r/(ea — b) may be
neglected in comparison to unity, one finds in each case

2 cos 6/2 . 6 . 36
g, = (E?Q) c\o/s(zr) (1 + sin 5 sin E) ...... [10]

0

E_g-x/’COSE< —g:}iq
<7r> \/(2’.) l—smzsm2 - Oz ... [11]

where E is Young’s modulus. G is independent of » and of § and
will be discussed in following sections of this paper.

For a crack traversing a plate, the thickness of which is con-
siderably smaller than the crack length, a generalized plane-stress
viewpoint is appropriate and o, is zero. However, for comparison
with results obtained by Sneddon (10) one may consider for the
moment the set of three extensional stresses which would pertain
to a plane-strain analysis. Sneddon studied the stress distribution
predicted by linear elastic theory in the vicinity of a “penny-
shaped’’ crack embedded in a much larger solid material and sub-
jected to tension perpendicular to the plane of the crack. For the
extensional stresses in the close neighborhood of the crack outer
boundary, Sneddon gave expressions identical to Equations [10]
and [11] with regard to the functional relationship of ¢, and o,
to r and 6. A third extensional stress directed parallel to the
outer boundary of the penny-shaped crack was given by Sneddon
with the remark that no counterpart to this third extensional
stress existed in a two-dimensional analysis of stresses near a
crack. However, the remark applies only to the two-dimensional
analysis assuming generalized plane stress. For the two-dimen-
sional analysis assuming plane strain the third extensional stress,
which ie Poisson’s ratio times the sum of ¢, and ¢, as in Equations
[10] and [11], is the counterpart to Sneddon’s third extensional
stress component. Thus for any small region around the outer
boundary of Sneddon’s penny-shaped crack, the stresses, strains,
and displacements correspond to a situation which is locally one

and

G, =
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of plane strain. The preceding comment becomes intuitively ob-
vious when one considers that, in Sneddon’s example, all particle
displacements lie in planes which contain the axis of symmetry.
These planes would approximate to a set of parallel planes within
any region whose dimensions are very small compared to distance
from the region to the axis of symmetry.

Force TENDING To CausE Crack ExTENsION

As the crack extends, an energy transfer from mechanical or
strain energy into other forms occurs in the vicinity of the crack.
The process is such that transfer of strain energy to heat domi-
nates. )

G is the magnitude of this energy exchange associated with unit
extension of the crack and may be regarded as the force tending to
cause crack extension. This may be seen as follows:

The linear elasticity relations resulting from Equations [5]
through [11] correspond to a parabolic shape for the crack epen-
ing near the crack tip. In Fig. 3 the origin of z, y-co-ordinates has
been shifted so that the erack opening, shown by the dashed line,

CRACK
OPENING
Pl s
TENSION Y p=(
J
X —e

Fia. 3 LiNEAR-EvrasTIC-THEORY CRACK OPENINGS AND STRESSES
NEAR END oF A CRACK

extendstoz = «. It isassumed « is very small compared to the
length of the crack. If y-direction tensions given by

_ L (E8)"_1
S(p)=1p ( 1r> '\/(23:) .............

are exerted on the edges of the crack fromz = Otox = o, and p
is increaged from zero to 1, the crack is closed up so that the crack
opening appears to end at the origin as shown by the full line.
The factor p may be regarded as a proportional loading parame-
ter, To the same approximation as Equation [10], the crack
opening from # = 0 to z = a at any time during the closure opera-
tion is given by

1/s
o(p) = (1 —p) ”;,—<E—1—g> ‘\/[2(a i) ) [13]

ko

Since the degree of closure is a linear function of 8, the work done
by the closing forces as p is varied from zero to 1 is given by

o a _ 1/2
f 8,(1)0(0)dz = 29 ("‘ “’) dz =
0 T Jo z

Thus oG is the ““fixed grip’’ loss of energy from the strain-energy
field as the crack extends by the amount a and the generalized
force interpretation of G is apparent.

For mathematical simplicity the foregoing calculation was

oG. .. [14]
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based upon the linear elasticity stresses and crack-opening dis-
placements in the immediate vicinity of the crack tip. One
should not assume, however, that local stress relaxation and
crack-opening distortion by plastic flow necessarily change the
rate of loss of strain energy with crack extension from that indi-
cated in the foregoing by an appreciable amount. The procedure
leading to Equation [14] is equivalent to finding the derivative
with respect to crack length of the total strain energy under fixed-
grip conditions. The contribution to this calculation from a small
circular region enclosing the crack tip is relatively small. In
situations such as those of Equations [5] through [9], the fraction
of G contributed from this region is, in fact, only about a third of
the ratio of the outer radius of the region to the half length a of
the crack. Thus if plastic strains near a crack affect the stress
field only within distances from the crack, small in relation to the
crack length, then the influence of these plastic strains on the
caleulation of G is correspondingly small,

REMARES ON MEASUREMENT METHODS

Consider the situation suggested earlier of a crack moving in the
z-direction across a large plate. As the erack moves under and
beyond & strain gage placed close to its path for ¢, measurement,
TFig. 2, the gage output is expected to rise and then fall to a small
value. An uncertainty in interpretation of the gage record in
terms of stress will exist if o,, is uncertain. If it can be assumed
that o,, is zero then, using Equations [10] and [11}]

Ee, =0, —vo, =

1/ 9/2
<—.,|-ES> % [(1 —») 4+ (1 + ») sin % sin %9] ..... [15]

where v is Poisson’s ratio. By putting r = y cse § and differentiat-
ing with respect to § with y constant, one finds ¢, should be
greatest when the gage position relative to the end of the crack is
at @ = 70 deg. This result is quite insensitive to the assumed
value of ¥ (unpublished calculations by L. McFadden and J. H.
Hancock based upon Equation [9]).

A better situation for analysis purposes exists if both €, and ¢,
are measured. In this event one has

E

o, = i-——V; (Ey -+ VE,) .............. [16]
Differentiating Expression [10] for o, with respect to 6 holding
y constant, one finds the maximum will occur when the measure-
ment position is at 73.4 deg. As a crack moves under and beyond
the position of measurement of ¢, and ¢, the quantity (e, + ve.)
plotted against time should have a maximum at that angle. Thus
with 0, r, and (e, + ve;) known for a particular location of the
erack, the stress-intensity factor (EG/m)'/2, and the crack exten-
sion force G existing at the moment of that crack location can be

calceulated.
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The stresses near the crack tip predicted by linear elasticity
theory are calculable from Equations [10] and [11] except for
knowledge of the intensity factor (Eg/r)l/ * which appears in the
expressions both for o, and for o, and the additive uniform stress
factor —o,,, which appears in the expression for ¢,. Any ar-
rangement of strain gages which permits determination of these
two factors serves to determine the crack-tip stress distribution,
The region in which the stresses are thus represented is an annular
region which excludes any large distortions close to the crack but
which extends outward only a small fraction of the crack length,

CONCLUSIONS

The stress field near the end of a somewhat brittle tensile frac-
ture, in situations of generalized plane stress or of plane strain,
can be approximated by a two-parameter set of equations. The
most significant of these parameters, the intensity factor, is
(BEG/x)"/* for plane stress where G is the force tending to cause
crack extension.? When the experimental situation permits use
of strain gages at distances from the crack tip, small compared to
the crack length, values of § and o¢,, may be evaluated con-
veniently by measuring local strain at selected positions.
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